1.資料來源:農情報告資料網
2.選擇"一般作物查詢"的"各項作物種植面積查詢(個別縣市及鄉鎮)"選項。
3.如上圖,按下"送出"鈕,可以得到下列資料:4.將上圖有關於虎尾鎮農作物的資訊全部選擇起來,如下圖:
5.複製上圖的資料給ChatGPT,可以得到下列資料。
6.下達"用表格整理"的指令。
7.下達指令"給我 Python程式能整理成表格"
8.ChatGPT產生出來的程式,因資料集較多,會以簡化方式呈現。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import pandas as pd # 資料 data = [ ("雜糧類", "合計", 4120.43), ("雜糧類", "落花生", 1304.03), ("雜糧類", "食用玉米", 917.76), ("雜糧類", "甘藷", 87.85), # ... 其他作物資料 ] # 建立DataFrame df = pd.DataFrame(data, columns=["類別", "作物", "面積 (公頃)"]) # 顯示DataFrame print(df) |
9.可以下達"請給我完整資料集的程式"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | import pandas as pd data = [ ("雜糧類", "合計", 4120.43), ("雜糧類", "落花生", 1304.03), ("雜糧類", "食用玉米", 917.76), ("雜糧類", "甘藷", 87.85), ("雜糧類", "蜀黍高粱", 21.33), ("雜糧類", "綠豆", 4.30), ("雜糧類", "大豆", 4.15), ("雜糧類", "其他豆類", 0.35), ("蔬菜類", "合計", 1520.67), ("蔬菜類", "馬鈴薯", 451.09), ("蔬菜類", "蒜頭", 400.78), ("蔬菜類", "甘藍", 135.06), ("蔬菜類", "蔥", 92.26), ("蔬菜類", "食用番茄", 55.85), ("蔬菜類", "不結球白菜", 55.55), ("蔬菜類", "青花菜", 46.03), ("蔬菜類", "萵苣", 36.42), ("蔬菜類", "芹菜", 31.65), ("蔬菜類", "其他葉菜", 26.75), ("蔬菜類", "結球白菜", 22.40), ("蔬菜類", "洋香瓜", 22.30), ("蔬菜類", "甜椒", 20.86), ("蔬菜類", "南瓜", 19.55), ("蔬菜類", "西瓜", 19.32), ("蔬菜類", "越瓜", 12.35), ("蔬菜類", "胡瓜", 10.42), ("蔬菜類", "香瓜", 10.36), ("蔬菜類", "芥藍", 7.20), ("蔬菜類", "大芥菜", 6.10), ("蔬菜類", "節瓜毛瓜", 5.95), ("蔬菜類", "扁蒲", 5.25), ("蔬菜類", "辣椒", 4.40), ("蔬菜類", "菠菜", 4.20), ("蔬菜類", "蘆筍", 3.84), ("蔬菜類", "竹筍", 2.50), ("蔬菜類", "芫荽", 1.85), ("蔬菜類", "茄子", 1.80), ("蔬菜類", "其他果菜", 1.50), ("蔬菜類", "苦瓜", 1.15), ("蔬菜類", "毛豆", 1.10), ("蔬菜類", "香芹菜", 1.10), ("蔬菜類", "冬瓜", 1.00), ("蔬菜類", "胡蘿蔔", 0.70), ("蔬菜類", "結頭菜", 0.55), ("蔬菜類", "蘿蔔", 0.53), ("蔬菜類", "草莓", 0.30), ("蔬菜類", "蔥頭", 0.30), ("蔬菜類", "四季豆", 0.20), ("蔬菜類", "絲瓜", 0.15), ("果品類", "合計", 116.13), ("果品類", "香蕉", 60.05), ("果品類", "其他果樹", 16.73), ("果品類", "紅龍果", 8.22), ("果品類", "木瓜", 8.02), ("果品類", "改良種芒果", 6.50), ("果品類", "番石榴", 3.89), ("果品類", "柳橙", 3.00), ("果品類", "檸檬", 2.72), ("果品類", "酪梨", 2.10), ("果品類", "文旦柚", 1.40), ("果品類", "可可椰子", 0.90), ("果品類", "椪柑", 0.72), ("果品類", "百香果", 0.65), ("果品類", "荔枝", 0.50), ("果品類", "蓮霧", 0.48), ("果品類", "其他柑桔", 0.25), ("牧草類", "合計", 5.80), ("牧草類", "其他長期牧草", 5.40), ("牧草類", "狼尾草", 0.40), ("特用作物", "合計", 33.10), ("特用作物", "羅勒", 31.45), ("特用作物", "其他短期特作", 0.60), ("特用作物", "其他長期特作", 0.40), ("特用作物", "向日葵", 0.30), ("特用作物", "生食甘蔗", 0.25), ("特用作物", "荖葉", 0.10), ("藥用作物", "合計", 2.25), ("藥用作物", "其他藥用", 2.10), ("藥用作物", "薄荷", 0.15), ("花卉", "合計", 12.74), ("花卉", "洋桔梗", 5.45), ("花卉", "夜來香", 4.00), ("花卉", "蘭花", 1.67), ("花卉", "其他短期切花", 0.60), ("花卉", "菊花", 0.50), ("花卉", "玫瑰", 0.40), ("花卉", "文心蘭", 0.12), ("苗圃", "苗圃", 89.97), ("洋菇類", "洋菇", 1320.00), ("香菇及其他菇類", "備註", ""), ] # 建立DataFrame df = pd.DataFrame(data, columns=["類別", "作物", "面積 (公頃)"]) # 顯示DataFrame print(df) |
11.下達"每一項列出前三名的程式"指令
12.您應該會發現,資料集被ChatGPT給省略掉了,完整程式如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | import pandas as pd data = [ ("雜糧類", "合計", 4120.43), ("雜糧類", "落花生", 1304.03), ("雜糧類", "食用玉米", 917.76), ("雜糧類", "甘藷", 87.85), ("雜糧類", "蜀黍高粱", 21.33), ("雜糧類", "綠豆", 4.30), ("雜糧類", "大豆", 4.15), ("雜糧類", "其他豆類", 0.35), ("蔬菜類", "合計", 1520.67), ("蔬菜類", "馬鈴薯", 451.09), ("蔬菜類", "蒜頭", 400.78), ("蔬菜類", "甘藍", 135.06), ("蔬菜類", "蔥", 92.26), ("蔬菜類", "食用番茄", 55.85), ("蔬菜類", "不結球白菜", 55.55), ("蔬菜類", "青花菜", 46.03), ("蔬菜類", "萵苣", 36.42), ("蔬菜類", "芹菜", 31.65), ("蔬菜類", "其他葉菜", 26.75), ("蔬菜類", "結球白菜", 22.40), ("蔬菜類", "洋香瓜", 22.30), ("蔬菜類", "甜椒", 20.86), ("蔬菜類", "南瓜", 19.55), ("蔬菜類", "西瓜", 19.32), ("蔬菜類", "越瓜", 12.35), ("蔬菜類", "胡瓜", 10.42), ("蔬菜類", "香瓜", 10.36), ("蔬菜類", "芥藍", 7.20), ("蔬菜類", "大芥菜", 6.10), ("蔬菜類", "節瓜毛瓜", 5.95), ("蔬菜類", "扁蒲", 5.25), ("蔬菜類", "辣椒", 4.40), ("蔬菜類", "菠菜", 4.20), ("蔬菜類", "蘆筍", 3.84), ("蔬菜類", "竹筍", 2.50), ("蔬菜類", "芫荽", 1.85), ("蔬菜類", "茄子", 1.80), ("蔬菜類", "其他果菜", 1.50), ("蔬菜類", "苦瓜", 1.15), ("蔬菜類", "毛豆", 1.10), ("蔬菜類", "香芹菜", 1.10), ("蔬菜類", "冬瓜", 1.00), ("蔬菜類", "胡蘿蔔", 0.70), ("蔬菜類", "結頭菜", 0.55), ("蔬菜類", "蘿蔔", 0.53), ("蔬菜類", "草莓", 0.30), ("蔬菜類", "蔥頭", 0.30), ("蔬菜類", "四季豆", 0.20), ("蔬菜類", "絲瓜", 0.15), ("果品類", "合計", 116.13), ("果品類", "香蕉", 60.05), ("果品類", "其他果樹", 16.73), ("果品類", "紅龍果", 8.22), ("果品類", "木瓜", 8.02), ("果品類", "改良種芒果", 6.50), ("果品類", "番石榴", 3.89), ("果品類", "柳橙", 3.00), ("果品類", "檸檬", 2.72), ("果品類", "酪梨", 2.10), ("果品類", "文旦柚", 1.40), ("果品類", "可可椰子", 0.90), ("果品類", "椪柑", 0.72), ("果品類", "百香果", 0.65), ("果品類", "荔枝", 0.50), ("果品類", "蓮霧", 0.48), ("果品類", "其他柑桔", 0.25), ("牧草類", "合計", 5.80), ("牧草類", "其他長期牧草", 5.40), ("牧草類", "狼尾草", 0.40), ("特用作物", "合計", 33.10), ("特用作物", "羅勒", 31.45), ("特用作物", "其他短期特作", 0.60), ("特用作物", "其他長期特作", 0.40), ("特用作物", "向日葵", 0.30), ("特用作物", "生食甘蔗", 0.25), ("特用作物", "荖葉", 0.10), ("藥用作物", "合計", 2.25), ("藥用作物", "其他藥用", 2.10), ("藥用作物", "薄荷", 0.15), ("花卉", "合計", 12.74), ("花卉", "洋桔梗", 5.45), ("花卉", "夜來香", 4.00), ("花卉", "蘭花", 1.67), ("花卉", "其他短期切花", 0.60), ("花卉", "菊花", 0.50), ("花卉", "玫瑰", 0.40), ("花卉", "文心蘭", 0.12), ("苗圃", "苗圃", 89.97), ("洋菇類", "洋菇", 1320.00), ("香菇及其他菇類", "備註", ""), ] # 建立DataFrame df = pd.DataFrame(data, columns=["類別", "作物", "面積 (公頃)"]) # 將資料按照類別和面積排序,降序排列 df_sorted = df.sort_values(by=["類別", "面積 (公頃)"], ascending=[True, False]) # 創建一個空的DataFrame,用於存儲前三名 top_three_df = pd.DataFrame(columns=["類別", "作物", "面積 (公頃)"]) # 找出每一類的前三名 categories = df_sorted["類別"].unique() for category in categories: top_three = df_sorted[df_sorted["類別"] == category].head(3) top_three_df = pd.concat([top_three_df, top_three]) # 重設索引 top_three_df.reset_index(drop=True, inplace=True) # 顯示前三名 print(top_three_df) |
13.虎尾鎮前三名的農作物的執行結果
沒有留言:
張貼留言